|
| Eigen () |
|
template<class T > |
| Eigen (const MatrixBase< T > &a) |
| Calculate the eigendecomposition of symmetric matrix A. More...
|
|
template<class T > |
Eigen & | calc (const MatrixBase< T > &a) |
| Calculate the eigendecomposition of symmetric matrix A. The eigenvalues/vectors are sorted from largest to smallest. More...
|
|
template<class T > |
Eigen & | calcValues (const MatrixBase< T > &a) |
| Calculate the eigenvalues of symmetric matrix A. This is a fast method for when the eigenvectors are not needed. More...
|
|
template<class B , class X > |
void | solve (const MatrixBase< B > &b, MatrixBase< X > &x) |
| Solve the linear system where A is the decomposed matrix. A and B row sizes must match. More...
|
|
template<class T > |
void | inverse (MatrixBase< T > &res) |
| Calculate the inverse of A, the decomposed matrix. More...
|
|
const Vec & | w () const |
| Get the eigenvalues of the decomposition. More...
|
|
const Matrix & | v () const |
| Get the column eigenvectors of the decomposition. More...
|
|
const Matrix & | vt () const |
| Get the row eigenvectors of the decomposition. More...
|
|
template<class Real>
class honey::Eigen< Real >
Eigendecomposition. Decomposes any square (n x n) symmetric matrix into eigenvalues and eigenvectors.
An eigenvector of a square matrix is a non-zero vector that when multiplied by the matrix remains parallel to the original.
An eigenvector satisfies: , where w is a scalar that elongates or shrinks the vector.
The eigendecomposition of a symmetric matrix A is: where V is an orthonormal matrix of column eigenvectors and W is a diagonal of eigenvalues.
Complexity: